X

Vous n'êtes pas connecté

Maroc Maroc - EURASIAREVIEW.COM - A la une - 22/Jun 22:29

A Quantum World On A Silicon Chip

The quantum internet would be a lot easier to build if we could use existing telecommunications technologies and infrastructure. Over the past few years, researchers have discovered defects in silicon — a ubiquitous semiconductor material —; that could be used to send and store quantum information over widely-used telecommunications wavelengths. Could these defects in silicon be the best choice among all the promising candidates to host qubits for quantum communications? "It’s still a Wild West out there,” said Evelyn Hu, the Tarr-Coyne Professor of Applied Physics and of Electrical Engineering at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS). “Even though new candidate defects are a promising quantum memory platform, there is often almost nothing known about why certain recipes are used to create them,  and how you can rapidly characterize them and their interactions, even in ensembles.  And ultimately, how can we fine-tune their behavior so they exhibit identical characteristics? If we are ever to make a technology out of this wide world of possibilities, we must have ways to characterize them better, faster and more efficiently.” Now, Hu and a team of researchers have developed a platform to probe, interact with and control these potentially powerful quantum systems.; The device uses a simple electric diode, one of the most common components in semiconductor chips, to manipulate qubits inside a commercial silicon wafer.; Using this device, the researchers were able to explore how the defect responds to changes in the electric field, tune its wavelength within the telecommunications band and even turn it on and off. “One of the most exciting things about having these defects in silicon is that you can use well-understood devices like diodes in this familiar material to understand a whole new quantum system and do something new with it,” said Aaron Day, a Ph.D. candidate at SEAS. Day co-led the work with Madison Sutula, a research fellow at Harvard.; While the research team used this approach to characterize defects in silicon, it could be used as a diagnostic and control tool for defects in other material systems.; The research is published in Nature Communications. Quantum defects, also known as color centers or quantum emitters, are imperfections in otherwise perfect crystal lattices that can trap single electrons. When those electrons are hit with a laser, they emit photons in specific wavelengths. The defects in silicon that researchers are most interested in for quantum communications are known as G-centers and T-centers. When these defects trap electrons, the electrons emit photons in a wavelength called the O-band, which is widely used in telecommunications. In this research, the team focused on G-center defects. The first thing they needed to figure out was how to make them. Unlike other types of defects, in which an atom is removed from a crystal lattice, G-center defects are made by adding atoms to the lattice, specifically carbon. But Hu, Day and the rest of the research team found that adding hydrogen atoms is also critical to consistently forming the defect.; Next, the researchers fabricated electrical diodes using a new approach which optimally sandwiches the defect at the center of every device without degrading the performance of either the defect or the diode.; The fabrication method can create hundreds of devices with embedded defects across a commercial wafer. Hooking the whole device up to apply a voltage, or electric field, the team found that when a negative voltage was applied across the device, the defects turned off and went dark. “Understanding when a change in environment leads to a loss of signal is important for engineering stable systems in networking applications,” said Day, The researchers also found that by using a local electric field, they could tune the wavelengths being emitted by the defect, which is important for quantum networking when disparate quantum systems need to be aligned.; The team also developed a diagnostic tool to image how the millions of defects embedded in the device change in space as the electric field is applied. “We found that the way we’re modifying the electric environment for the defects has a spatial profile, and we can image it directly by seeing the changes in the intensity of light being emitted by the defects,” said Day. “By using so many emitters and getting statistics on their performance, we now have a good understanding of how defects respond to changes in their environment. We can use that information to inform how to build the best environments for these defects in future devices. We have a better understanding of what makes these defects happy and unhappy.” Next, the team aims to use the same techniques to understand the T-center defects in silicon.

Articles similaires

Highly-Sensitive Beaks Could Help Albatrosses And Penguins Find Their Food

eurasiareview.com - 18/Sep 22:19

Researchers have discovered that seabirds, including penguins and albatrosses, have highly-sensitive regions in their beaks that could be used to...

Coral Colony From Fiji Reveals Warmest Temperatures In Over 600 Years

eurasiareview.com - 18/Sep 22:28

The sea surface temperature in the Fijian archipelago in the southwestern Pacific is now at its maximum for more than 600 years. This is the result...

Researchers: Superconducting Qubit Technology Scales Up Using Industrial Fabrication

thequantumdaily.com - 19/Sep 08:26

Insider Brief Researchers at Imec, a Belgium-based research center, have demonstrated a new method for fabricating superconducting transmon qubits...

A Dietary Compound That Increases Longevity And Protects Against Alzheimer’s Disease In Experimental Models

eurasiareview.com - 22:47

Researchers from the Colour and Food Quality group at the Faculty of Pharmacy (University of Seville), in collaboration with Dr Marina Ezcurra's...

Over 3,600 food packaging chemicals found in human bodies

rawstory.com - 17/Sep 18:22

More than 3,600 chemicals used in food packaging or preparation have been detected in human bodies, some of which are hazardous to health, while...

Sorry! Image not available at this time

Opinion: The internet is worse than it used to be. How did we get here, and can we go back?

techxplore.com - 17/Sep 16:12

When it comes to our experience of the internet, "the times, they are a-changin'," as Bob Dylan would say. You can't quite recall how, but the...

Sorry! Image not available at this time

How Red Hat is integrating post-quantum cryptography into our products

itsecuritynews.info - 16/Sep 17:34

In a previous post-quantum (PQ) article, we introduced the threat that quantum computing presents for any systems, networks and applications that...

Autonomous Vehicles Could Understand Their Passengers Better With ChatGPT

eurasiareview.com - 16/Sep 22:20

Imagine simply telling your vehicle, “I’m in a hurry,” and it automatically takes you on the most efficient route to where you need to...

Sorry! Image not available at this time

New lithium-sulfur batteries stay safe and last longer, even when cut or folded

knowridge.com - 15/Sep 15:13

Lithium-ion batteries are commonly used in devices like phones, e-bikes, and handheld vacuums. However, these batteries have some downsides: they can...

Samples From Huanan Seafood Market Provide Further Evidence Of COVID-19 Animal Origins

eurasiareview.com - 19/Sep 22:50

A new international study provides a shortlist of the wildlife species present at the market from which SARS-CoV-2, the virus responsible for the...